(x^(1/2)/3)=(243/x)

Simple and best practice solution for (x^(1/2)/3)=(243/x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^(1/2)/3)=(243/x) equation:


D( x )

x < 0

x = 0

x < 0

x = 0

x = 0

x in (0:+oo)

(x^(1/2))/3 = 243/x // - 243/x

(x^(1/2))/3-(243/x) = 0

(x^(1/2))/3-243*x^-1 = 0

1/3*x^(1/2)-243*x^-1 = 0

t_1 = x^(1/2)

1/3*t_1^1-243*t_1^-2 = 0

1/3*t_1^1-243*t_1^-2 = 0

(1/3*t_1^3-243*t_1^0)/(t_1^2) = 0 // * t_1^4

t_1^2*(1/3*t_1^3-243*t_1^0) = 0

t_1^2

(1/3)*t_1^3-243 = 0

(1/3)*t_1^3-243 = 0 // * 0

{ 1, -1, 3, -3, 9, -9, 27, -27, 81, -81, 243, -243, 729, -729 }

1

t_1 = 1

t_1^3-729 = -728

1

-1

t_1 = -1

t_1^3-729 = -730

-1

3

t_1 = 3

t_1^3-729 = -702

3

-3

t_1 = -3

t_1^3-729 = -756

-3

9

t_1 = 9

t_1^3-729 = 0

9

t_1-9

t_1^2+9*t_1+81

t_1^3-729

t_1-9

9*t_1^2-t_1^3

9*t_1^2-729

81*t_1-9*t_1^2

81*t_1-729

729-81*t_1

0

t_1^2+9*t_1+81 = 0

DELTA = 9^2-(1*4*81)

DELTA = -243

DELTA < 0

t_1 in { 9}

t_1 = 9

x^(1/2)-9 = 0

1*x^(1/2) = 9 // : 1

x^(1/2) = 9

x^(1/2) = 9 // ^ 2

x = 81

x = 81

See similar equations:

| 5/270 | | 10x+3y=-32 | | -5+3(x+5)-(5x+1)=-3 | | X-5x-11=5 | | 0.2(3x-4)=-0.2(3-4x)+0.7 | | 2x+13=6x-39 | | 4x^3+4y^2=0 | | 31+4y-7=15y-12-5y | | 5x-4y=-49 | | A=3.14*9 | | 13x-10=4(3x+4)-6 | | 7(v+2)-3v=2(2v+4)-14 | | 12=-6-3x | | 0.03(6c-56)=-0.6(c-5) | | 5w-15=85 | | 0.03(6c-56)=0.6(c-5) | | n/1.4 | | 3y-(3y/4)=27 | | -4x*2=18 | | 5(3+4m)+4=6+7m | | h-24p=444 | | 3w+4w=36 | | h-24=444 | | 6x-9=-x+5 | | 2x^2+64=-29 | | x/3=12-x | | 2(-1)-4(-1)+6= | | 5e^6x=120 | | 4d-4d-2=18 | | 27+y=17 | | 0=25x^4-144 | | 8(y+5)-4=12 |

Equations solver categories